本文共 894 字,大约阅读时间需要 2 分钟。
最近,IBM的一个研究团队他们在语音识别上创造了一个新的业界纪录,在使用的情况下词错误率为5.5%,接近于人类的错误率5.1%。人们一般会在所听到的20个单词中遗失其中的一到两个。在一次五分钟左右的对话中,大约会遗失80个词。
\\中包括技术的应用和的集成。其中语音识别模型使用了(LSTM,Long Short Term Memory)和 语言模型。在声学模型上,他们使用了三个模型的分数融合(Score Fusion)。第一个模型是有多特征输入的LSTM,第二个模型是经过说话者对抗多任务学习(Speaker-adversarial Multi-task Learning)训练后的LSTM。第三个模型是具有25个卷积层与时间扩张(Time-dilated)卷积的残差网络(ResNet)。最后一个模型不仅从正向的例子中学习,而且也使用了负向的例子,因此当类似的语音模式重现时,会具有更好的表现。
\\来自蒙特利尔大学蒙特利尔学习算法实验室(Montreal Institute for Learning Algorithms )的对语音识别技术是如此评论的:
\\\\\在过去的几年中,尽管在语音识别或物体识别等人工智能领域取得了巨大的进展,技术上也已经接近于人类的水平,但在科学上依然存在着挑战。诚然,标准的基准测试并非总能揭示真实数据的多样性和复杂度。例如,不同的数据集对于不同的任务会呈现出不一样的敏感性,而且结果十分依赖于如何对被测试人员进行评估,比如使用专业的誊写员进行语音识别测试。
\
他也指出,IBM的这项研究将声学模型与语言模型应用于神经网络与深度学习,有助于推进语音识别技术的发展。
\\另据一些语音识别相关的新闻报道,IBM已将添加到他们的“”服务中。这一技术有助于一些用例的实现,例如识别交谈中的各方发言者。所有这些成就所带来的技术有助于解决人类耳朵、声音和大脑交互复杂性的问题。
\\查看英文原文:
\\感谢对本文的审校。
\\给InfoQ中文站投稿或者参与内容翻译工作,请邮件至。也欢迎大家通过新浪微博(,),微信(微信号:)关注我们。
转载地址:http://bbgum.baihongyu.com/